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Abstract Human dopamine D4 receptor is a GPCR target in
the treatment of neurological and psychiatric conditions such
as schizophrenia and Parkinson’s disease. The X-ray structure
of this receptor has not been resolved so far. Therefore, a
proper 3D structure of D4 could provide a good tool in order
to design novel ligands against this target. In this study, ho-
mology modeling studies were performed to obtain a reason-
able structure of the receptor using known templates. The
obtained model was subjected to molecular dynamic simula-
tion within a DPPC membrane system. Some structural fea-
tures of the receptor such as a conserved disulfide bridge and
ionic lock were considered in the modeling experiments. The
resulted trajectories of simulation were clustered based on the
root mean square deviation of the backbone. Some known
ligands and decoys were accordingly docked into the repre-
sentative frames of each cluster. The best final model was
finally selected based on its ability to discriminate between
active ligands and inactive decoys (ROC=0.839). The pre-
sented model of human D4 receptor could be a promising
starting point in future studies of drug design for the described
target.
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Introduction

G protein coupled receptors (GPCRs), as a large family of
transmembrane proteins, have key functions in receiving ex-
tracellular signals and physiological function of the body [1].
Therefore, they are important targets in a wide spectrum of
diseases [2]. In terms of therapeutic relevance, approximately
500 members of this family have been identified, although
only a few of them were structurally characterized [3].
Dopamine receptors, as one group of the GPCRs family,
are best known for their regulating roles in essential functions
including cognitive processes and emotional status [4]. Ad-
verse activation of dopaminergic pathways takes part in neu-
ropathological disorders such as schizophrenia, Parkinson’s
disease, bipolar disorder, attention deficit hyperactivity disor-
der (ADHD), Huntington’s disease, and Tourette’s syndrome
[5]. Among dopamine receptors, D4 is mostly expressed in
GABAergic neurons of the cerebral cortex, hippocampus, and
substantia nigra [6]. Therefore, D4 receptor plays an important
role in cognitive tasks and memory performance and is one of
the major goals in treating schizophrenia [7]. Some efforts
were based on synthesis of selective ligands against D4 recep-
tor. However, most of these compounds indicated weak affin-
ities toward D4 receptor [8, 9]. ML398 has been presented as a
selective D4 antagonist in recent studies [10]. Moreover, some
selective ligands exhibited remarkable binding affinity to
5HT AR ,5HT,aR, and SHT,5R [11, 12]. A SAR study of
selective D4 ligands reported an important arene-cation inter-
action between the ligands arene moiety and the residue Arg-
186. This interaction was found to be critical in designing
potent D4 ligands [13]. Also a ligand-based QSAR study for
the antagonists of human D4 was reported in the literature
[14]. According to these efforts, it is of great importance to
get knowledge about D4R three dimensional (3D) structure.
Obtaining 3D structure of transmembrane proteins is a diffi-
cult task as they are embedded in the lipid membrane and
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extracting adequate amount for X-ray crystallography is hard
to achieve [15]. In addition, lipid membrane can affect protein
conformation so that obtaining a true conformation by empir-
ical method is so challenging [16]. Despite their importance,
transmembrane protein structures constitute only 1 % of the
Protein Data Bank [17]. Recently, 3D structures of some
GPCRs, such as human dopamine D3 receptor (D3R), have
been reported by experimental methods [18]. Since dopamine
receptors are to some extent similar with regard to their se-
quences, human D3R structure can be utilized as the main
template for homology modeling of other dopamine receptors
such as D4R.

More knowledge about the structural features of human
D4R could lead to progress in the area of designing potent
and selective compounds against this target. A reasonable ap-
proach to reach a 3D conformation of the receptor for further
binding mode analysis is molecular modeling methods [19].
Homology modeling is a technique able to identify and refine
models of the receptor. It can also provide valuable information
for further structure based virtual screening studies [20, 21].

In this study, a predictive 3D structure of D4R was pro-
posed by means of homology modeling technique. MD stud-
ies on the whole system (protein in DPPC membrane) were
also carried out to equilibrate and optimize the protein in
physiological conditions [22, 23]. Subsequently, the resulted
frames were evaluated for their ability to distinguish between
experimentally known ligands and decoys of the receptor
using docking approach. The frame with a higher predictive
ability was finally proposed as a model for the natural confor-
mation of the receptor at the binding site. Results of this con-
text could possibly lead to structure-based drug design and
targeting of this receptor in future studies [24].

Materials and methods
Homology modeling studies

The primary sequence of human dopamine receptor type
4(DRD4, access number P21917) was retrieved from UniProt
database at www.expasy.org [25]. The FASTA sequence was
subjected to Basic Local Alignment Search Toolbox (BLAST)
using BLOSUMS62 scoring matrix at NCBI database [26].
Recursive runs of BLAST were repeated for transmembrane
regions of the receptor to find more related templates for these
regions. Finally, four templates [PDB code: 3pbl
(humandopamine D3 receptor in complex with Eticlopride),
3UON(human M2 muscarinic acetylcholine receptor bound to
an antagonist), 4GRV(the neurotensin receptor NTS1 in com-
plex with neurotensin), and 4IB4 (the chimeric protein of 5-
HT2B-BRIL in complex with ergotamine)] were obtained
based on their similarity toward D4 receptor sequence. Sub-
sequently, a multiple alignment file has been generated
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between the sequence of the receptor and the templates using
ClustalX2 software [27]. Some modifications were done in the
alignment file by manual insertion and removing of the gap
penalties.

For prediction of transmembrane helices, different methods
including HMMTOP [28], TMHMM [29], DAS [30], SOSUI
[31], TMpred [32], PolyPhobius [33], predict protein [34],
APSSP [35], ExPASY [25], and TOPCONS [36] were
employed. The final alignment file was used for 3D genera-
tion of D4 receptor using modeler 9v12 software [37]. About
100 different structures of the receptor were modeled with
regards to energy refinement as implemented in modeller9v12
[38]. An in-house application (Modelface) was used, as inter-
face to Modeller software, for generation and running of the
python scripts needed for the experiments. A conservative
disulfide bridge was introduced in all models between the
residues 108 (extra cellular loop 2) and 185 (extra cellular
loop 3). Ranking of the resulted models was done based on
DOPE score values generated by modeler software. After-
ward, Bioinf, Tasser, and Falc servers were utilized to refine
the models and enhance the accuracy of low conserved loop
regions [39—41]. The model with the highest DOPE score
value was submitted to Procheck server for further verification
[42].

MD simulation

MD simulation study was performed on the final model ob-
tained from homology modeling studies. The protein PDB
structure was embedded in a DPPC membrane at appropriate
orientation and location of TM regions. Before embedding the
PDB structure, all coordinates were translated to proper loca-
tions based on the data of TM regions. Different algorithms
have been presented to equilibrate a receptor inside lipid mem-
brane. A very useful and convenient method with less con-
sumption of time during equilibrium is called InflatGRO [43].
Therefore, to equilibrate the resulted system of lipid-protein,
InflateGRO perl script was used [43]. At first, lipids and pro-
tein were placed on an expanded grid and then shrinking pro-
cess was done consecutively to reach the favorable density
area per lipid for DPPC membranes (62.9-64 A?) [44].
GridMAT-MD v2.0 perl script was used to calculate area
per lipid of the resulted system [45]. The system was then
solvated with spc216 water model and a concentration of
0.15 M NaCl was inserted to simulate the physiological con-
ditions. Energy minimization followed by two short runs of
MD (1 ns) was done on the whole system to stabilize it for
main run of simulation. Steepest descent minimization inte-
grator with maximum 50,000 cycles and maximum 1000.0 kJ
(mol nm) " force were used during minimization. NVT and
NPT ensembles with restrains on protein backbone were used
for two runs of MD. The main run of MD was subsequently
carried out and the system and trajectories were subjected to
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Table 1  Percent identity matrix of sequences created by Clustalx2.1

% Identity matrix ~ 4GRV 3UON  3PBL 41B4 DRD4
4GRV 100.00 50.23 51.26 22.70 16.74
3UON 100.00 57.64 24.73 21.04
3PBL 100.00 29.36 31.53
41B4 100.00 25.61
DRD4 100.00

further studies. Leap-frog integrator with LINCS constraint
algorithm and particle mesh Ewald coulomb type were set
for MD. The more accurate Nose-Hoover thermostat together
with Parrinello-Rahman pressure coupling method was used
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Fig. 1 The final alignment used in homology modeling step

during the main run of MD. Energy and RMSD plot calcula-
tions and visualizations of the structures were done using
Gromacs and VMD softwares, respectively [46]. All MD ex-
periments were done using GROMOS force field implement-
ed in Gromacs 4.5.3.[47].

Docking studies

Q-site finder was used in order to find the potential binding
sites of the receptor [48]. Subsequently, different frames of the
receptor were extracted after clustering MD trajectories using
principal component analysis. For this purpose, a vector of
backbone variation for all residues within a frame was gener-
ated by means of VMD software. The resulted matrix for all

APAAPGLPP]
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467
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Fig. 2 Ramachandran plot of human dopamine D4 structure

frames was subjected to singular value decomposition (SVD)
algorithm as implemented in MATLAB software (Mathworks
Inc). The clusters were obtained based on the plot of the first
two PCs with maximum eigenvalues. Two frames inside each
cluster were selected for further docking studies. In docking
simulation study, 121 small molecule structures with experi-
mental biological activities were obtained from EMBL data-
base as SMILES [49]. Based on their IC50 values, 31 active
structures and 90 inactive compounds were considered as li-
gands and decoys, respectively.

3D generation and energy minimization of the structures
were accomplished using Openbabel 2.3.2 [50]. Docking sim-
ulations was performed using Autodock4.2 and grid box was
centered on Cox atom of Asp115 with 60x60x60 dimensions.
Parameters of genetic algorithm were set to ten runs, 2,500,
000 energy evaluations and 150 population size.

The docking scores of ligands and decoys were analyzed
by receiver operating characteristic (ROC) curves [51]. In

Fig. 3 The correct orientation of the receptor within lipid bilayer based
on the data displayed in Table 2

addition, all visual inspection of protein ligand complexes
was done using VMD software [46].

Results and discussion

To achieve an optimized 3D structure for D4 receptor, homol-
ogy modeling was used in order to predict the 3D structure of
receptor using known similar proteins. The templates used in

Table 2 Prediction of

transmembrane domains of Method ™1 ™2 ™3 T™4 T™MS T™6 ™7

human dopamine D4 receptor
HMMTOP 36-59 72-93 110-130 153-174 193-214 395413 430451
TMHMM 37-59 72-94 109-131 152-174 194-216 392414 420-451
Predict protein 38-56 73-93 112-130 154-171 194-213 397415 430450
DAS 35-59 72-94 111-138 153-172 195-215 395414 420-440
SOSUI 42-64 70-92 114-136 153-175 194-216 392414 417-439
APSSP 29-59 66-95 101-136 147-170 189-213 385405 425-451
ExPASY 38-60 71-93 110-131 152-175 192213 345-417 427449
TOPCONS 35-57 72-92 111-131 154-174 197217 392412 431451
TMpred 34-57 72-96 107-131 153-174 194211 395413 432450
PolyPhobius 35-60 72-92 112-141 153-172 192-213 392412 432-451
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Fig. 4 RMSD of Ca during 50 ns MD simulation (/eff), Energy plot of MD simulation (right)

modeling of the receptor are listed in Table 1. 3PBL (D3) was
used as the main template due to its higher identity toward
human dopamine D4 receptor (31.54 %). Helices orientations
and diversity in loop portion are the main structural difference
between D2-like receptors. Length of the sequence in human
D4 (467) differs from that of D3 (400). It is also worth noting
that 3PBL, 3UON, and 4GRYV are nearly 50 % identical to
each other in terms of their primary sequence. As described
earlier, the homologue templates were found by means of
basic local alignment search tool (BLAST) at NCBI and the
threading based method as implemented in Tasser server. As
displayed in Fig. 1, the sequences were aligned in such a way
to cover the maximum area of the sequence for dopamine
receptor. The alignment procedure was the key stone in ho-
mology modeling of the receptor. Since there was not any
favored template covering the first extracellular loop (residue
1-37), Falc server was used to model and refine this part of the
protein. Using refinement step led to dramatic enhancement of

the final model. Different techniques could be applied for
quality validation of the models. In this study, the primary
ranking of the generated models was based on DOPE score
according to the energy of the final 3D structures. Moreover,
the final model needed to be subjected for further validations
[42]. Ramachandran plot, as the output of PROCHECK soft-
ware, assessed the final quality of protein by indicating resi-
dues located in disallowed regions and percentage of those in
appropriate zone [42]. As displayed in Fig. 2, there are few
residues located in disallowed regions and more than 96 % of
residues are found in favored or allowed regions of the plot. It
is therefore clear that the resulted model meets the required
quality criteria for further studies.

Natural environment of body and cell membrane would
cause conformational change in target protein. One useful
method for transformational prediction, which makes a 3D
model adapt with its physiological environment, is molecular
dynamic simulation. TM regions of the receptor must be

Fig. 5 Heatmap analysis of “ = » m
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Fig. 6 Presence ofionic lock and
disulfide bridge in D4 model as
two structural features of the
receptor

embedded in lipid bilayer at proper orientation before running
simulation studies of a membrane protein. For this purpose,
different methods described in the methodology section were
aimed to predict transmembrane (TM) regions of the receptor.
As displayed in Table 2, all methods converged reasonably in
predicting TM residues of the receptor.

GPCRs and other membrane bound proteins are inserted
into phospholipid membranes following a very specific geom-
etry and according to their particular chemistry called
“amphipathic character” (polar heads of phospholipids are in
contact with water and hydrophobic aminoacids of membrane
bound proteins in close contact with the hydrophobic tail of
phospholipids). For this purpose the receptor was translated
with care at correct orientation inside the membrane. As
depicted in Fig. 3, the obtained geometry was in accord with
the data of Table 2. The system was solvated in such a way not
to permit penetration of water molecules inside hydrophobic
TM regions of the receptor. To evaluate the conformational
stability of the predicted protein during MD simulation, root
mean square deviation (RMSD) plot was calculated on the
protein backbone. As shown in Fig. 4, the simulation was

12

going on 50 ns from the starting point. The energy plot re-
vealed a stable status for the resulted system during simula-
tion. In this study, heat map analysis of Coc RMSD was used
for showing conformational changes within the system during
simulation. The results of heatmap for all trajectories are
displayed in Fig. 5. The most conformational fluctuations oc-
curred in residues 1-32 and 240-350 which are located in the
first extracellular and third cytoplasmic domains, respectively.
In residues 1-32, the N-terminal of the protein is unrestrained
so its conformation was prone to variations. In case of cyto-
plasmic domain (ICL3, residues 240-350), its nature as a long
sequence, led to extra flexibility for this region and more con-
formational fluctuations were therefore anticipated.

The conserved disulfide bridge between the two residues
108 in EL2 and 185 in EL3 was also deterministic in molec-
ular dynamic simulation (Fig. 6). A similar disulfide bridge
was previously reported in the models of human dopamine D2
receptor as well as in the crystal structure of D3 [18, 52].
However, in D4, disulfide bridge is located between ECL2
(108) and ECL3 (185) but in case of D3 receptor the location
is at ECL2 (Cys 181) and helix 3 (Cys103) [18].

Fig. 7 Distance calculations
between Argl33N and Glu3890. 10 '
Tonic lock could be observed at -
steady states of the simulation = A
-
S
a8 4
2
0
cwoweowouwn
o
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A common feature of most class A GPCRs is the presence
of ionic lock between “D[EJRY” motif and a negatively
charged residue at the front cytoplasmic domain [18, 53].
Since our model was to represent the receptor at antagonist
state, it was of great importance to monitor the formation of
the aforementioned salt bridge between cytoplasmic region of
helices III (Arg133) and IV (Glu389) (Fig. 6). The nature of
ionic lock across NH chain of Arg133 and OE of Glu389 was
investigated using the distance calculations for these two res-
idues. As seen in Fig. 7, the ionic lock was present at steady
state of the simulation.

Docking studies were used as a tool for further validation
of the experiments and to find a useful model for future studies
of drug design. To avoid possible errors caused by random
selection of the representative frames, we used an unsuper-
vised classification approach. Two representative frames were
thereafter selected within each cluster of PCA for docking
purpose (Fig. 8).

According to the data in Fig. 8, PC1, and PC2 were bearing
86.05 and 3.86 % of the data based on their eigenvalues,
respectively.

A primary docking of known ligands with antagonist ac-
tivity together with a series of decoys was performed on rep-
resentative frames and the resulted dlgs were subjected for
calculation of ROC values. The area under the curve for all
representative frames are displayed in Table 3. The highest
values of ROC were observed in frames 1638 (0.767), 2677
(0.722), and 5337 (0.775), suggesting reasonable predictive
ability for these models of human dopamine D4 receptor.
Since all used structures were previously evaluated for antag-
onist activity, the frames were therefore representing the re-
ceptor at antagonist state. Although the described frames with
reasonable results of ROC values were extracted from differ-
ent clusters, all of them were bearing the conserved ionic lock
moiety needed for antagonist state of the receptor. In an

T T T T T T T T T

af ]
1452,1482

1630,1638

PC2.386 %

30F . < . “ |

-350 -300 -250 -200 -150 -100 -50 0 50 100
PC1-86.05%
Fig. 8 Plot of PC1 and PC2 for trajectories of simulation

Table 3  Docking results for the representative frames of human
dopamine D4 receptor

Frame No. Cluster ROC* ROC®
1 1600 1 0.569
2 1715 1 0.513
3 1630 2 0.555
4 1638 2 0.767* 0.839
5 1452 3 0.600
6 1482 3 0.592
7 1688 4 0.627
8 1675 4 0.630
9 1762 5 0.596
10 2402 5 0.656
11 1642 6 0.638
12 1669 6 0.445
13 4022 7 0.713
14 4572 7 0.698
15 2677 8 0.722%* 0.706
16 3612 8 0.661
17 3792 9 0.633
18 5147 9 0.690
19 4775 10 0.666
20 5337 10 0.775* 0.756

#Primary docking protocol, run=10, evaluation=2,500,000, population
size=150

® Modified docking protocol, run=100, evaluation=25,000,000, popula-
tion size=300

attempt to improve the docking protocol, the procedure was
repeated on the described frames using a more time consum-
ing method (run=100, evaluation=25,000,000, population
size=300). As displayed in Table 3 and Fig. 9, the modified

AUC= 0.839

(Se)
1

075

0S

025

0 025 05 075 1

(1-5p)
Fig. 9 ROC curve of frame 1638 with an improved docking protocol
(run=100, evaluation=25,000,000, population size=300)
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Fig. 10 Docking result for the interaction of human dopamine D4 receptor with CHEMBL332154

docking protocol led to a significant increase in ROC value in
case of frame 1638 (0.839). Tuning of docking parameters
was however futile in the case of the other two frames used
in this experiment. In addition to analysis of binding energies
for the ligands and receptor complexes, the binding mode of
some docked structures was investigated by visual inspection.
The proposed binding mode of CHEMBL332154; the selec-
tive D4 antagonist [54]; possessed the lowest docking energy,
as displayed in Fig. 10. The three main residues which are
crucial in the interaction of the ligand and human dopamine
D4 receptor are Trp407, Asp115, and Ser122. As displayed in
Fig. 10, residue Trp407 could take role in 7t-7t and cation-7t
interactions with the ligand. In addition, Asp115 and Ser122
reinforced the contacts by formation of ionic bond and hydro-
gen bond interactions, respectively. Superposition of the best
frame of D4 with the crystal structure of D3 at TM regions has
revealed and RMSD value of 2.42. The superposed structures
are provided in the Supplementary information section in or-
der to avoid lengthening of the paper. All described observa-
tions demonstrated that the final optimized model is represen-
tative of D4 receptor at antagonist state.

Conclusions

A 3D model for human dopamine D4 receptor was presented
based on homology modeling, docking and molecular

@ Springer

dynamic simulation studies. Verification of model using
ramachandran plot showed that most of these residues are in
favored or allowed regions of the plot. The presence of ionic
lock as well as a conserved disulfide bridge in our proposed
model is also additive to its advantages as a proper 3D struc-
ture. The further validation of the model by docking studies
showed that this model could mimic the antagonistic state of
the receptor with a reasonable ability to distinguish between
ligands and decoys (ROC value=0.839). It could be conclud-
ed that the presented 3D model of D4 receptor could donate an
appropriate insight for designing new ligands in future studies.
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